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Abstract
This paper presents a semi-local quasi-harmonic model with local phonon
density of states (LPDOS) to compute the thermodynamic and mechanical
properties of silicon nanostructures at finite temperature. In contrast to an
earlier approach (Tang and Aluru 2006 Phys. Rev. B 74 235441), where a
quasi-harmonic model with LPDOS computed by a Green’s function technique
(QHMG) was developed considering many layers of atoms, the semi-local
approach considers only two layers of atoms to compute the LPDOS. We show
that the semi-local approach combines the accuracy of the QHMG approach
and the computational efficiency of the local quasi-harmonic model. We present
results for several silicon nanostructures to address the accuracy and efficiency
of the semi-local approach.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The calculation of thermodynamic and mechanical properties of nanostructures is important
for developing physical theories and computational design tools for applications in
nanoelectromechanical systems (NEMS) [1]. Generally, the most accurate approach for
predicting the material properties is the first-principles quantum-mechanical method, where
ab initio local density functional techniques have been used to determine the thermodynamic
properties of silicon [2] and other materials [3]. However, due to the complexity of these
methods and the need for large computational resources, these techniques are limited to
very small systems. Empirical and semi-empirical interatomic potentials [4–6] have been
developed to provide a simple and a reasonably accurate description of materials. The various
parameters in these potentials are determined from experiments or from ab initio calculations.
Molecular dynamics (MD) and Monte Carlo (MC) simulations are two popular methods based
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on interatomic potentials [7, 8]. Despite their popularity, their computational cost is still an
inherent drawback.

Another class of methods relies on the theory of quantum-mechanical lattice dynamics,
where the key step is the quasi-harmonic approximation (QHM method) of the interatomic
potential [9, 10]. For a system of N atoms with a given interatomic potential, the Helmholtz free
energy and other thermodynamic properties can be computed by diagonalizing the 3N × 3N
force constant matrix [10]. When the system contains thousands of atoms, directly solving
the 3N × 3N eigenvalue problem can be quite expensive. Several other methods have been
proposed based on the QHM method. For a perfect crystal lattice, due to the periodicity of
the atomic structure, it is more efficient to compute the relevant quantities in the reciprocal
space (QHMK method) [10], e.g., we only need to solve several 6 × 6 eigenvalue problems for
crystalline silicon. The QHMK method can accurately predict the bulk properties of silicon,
but due to the assumption of periodicity this method cannot directly be used to compute
properties of confined nanostructures (nanostructures with a finite number of unit cells in
one or more directions). LeSar et al [11] proposed a local quasi-harmonic approximation
(LQHM method) to reduce the 3N × 3N eigenvalue problem for a system of N atoms to
N 3 × 3 eigenvalue problems, by assuming that the vibration of each atom in the system is
independent of other atoms. The LQHM model is fast and simple, but the accuracy of the
approach can be questionable [7, 12, 13]. By using the local phonon density of states (LPDOS)
technique with on-site phonon Green’s function [14] (QHMG method [15]), the thermodynamic
and mechanical properties can be calculated without directly solving eigenvalue problems.
The QHMG method is an accurate approach to compute the thermodynamic and mechanical
properties of bulk and confined silicon structures. However, the computational cost of the
QHMG approach can still be a drawback for practical NEMS applications. In this paper, we
propose a semi-local QHMG method which computes the local phonon density of states, and
subsequently the thermodynamic and mechanical properties, by considering only two layers of
atoms around the atom of interest. We will show that the semi-local QHMG approach—to a
large extent—combines the accuracy of the QHMG approach and the computational efficiency
of the LQHM approach.

The rest of the paper is organized as follows: section 2 summarizes the basic concepts in
the theory of lattice dynamics and the QHMG method before discussing the theoretical and
implementation aspects of the semi-local QHMG method. Section 3 presents results on the
calculation of thermodynamic and mechanical properties of silicon nanostructures using the
semi-local QHMG method. A comparison of the semi-local QHMG method with other methods
in terms of accuracy and computational efficiency is also presented. Finally, conclusions are
given in section 4.

2. Theory

2.1. Lattice dynamics

The lattice dynamics theory [10] is commonly used to compute the thermodynamic properties
of crystals with a quasi-harmonic approximation. For an N-atom system, the total potential
energy is first expanded in the atomic displacements by using the Taylor’s series expansion.
In the quasi-harmonic approximation, the higher-order (>2) terms are neglected and the total
potential energy can thus be rewritten as

U(x1, . . . , xN ) = U(x0
1, . . . , x0

N )+
1

2

N∑

α,β=1

3∑

j,k=1

∂2U(x1, . . . , xN )

∂xα j∂xβk

⏐⏐⏐⏐
x1,...,xN =x0

1,...,x
0
N

vα j vβk,

(1)

2
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where U is the total potential energy of the system, xα and x0
α , α = 1, 2, . . . , N , are the

instantaneous position vector and the equilibrium position vector of atom α, respectively, xα j

and xβk are the components of the position vectors xα and xβ along the j th and kth directions,
respectively, vα = xα − x0

α is the displacement vector of atom α due to the thermal vibration,
and vα j and vβk are the components of the displacement vectors vα and vβ along the j th
and kth directions, respectively. By denoting x = (x1, . . . , xN ), x0 = (x0

1, . . . , x0
N ), and

v = [v1, . . . , vN ]T, equation (1) can be rewritten in a matrix form as

U(x) = U(x0)+ 1
2 vTΦv, (2)

where Φ is the 3N × 3N force constant matrix given by

�3α+ j−3,3β+k−3 = ∂2U(x)
∂xα j∂xβk

⏐⏐⏐⏐
x=x0

, α, β = 1, . . . , N, j, k = 1, 2, 3. (3)

Note that in the quasi-harmonic approximation the force constant matrix is a function of
temperature T , i.e. the equilibrium position x0 in equation (3) depends on the temperature
(x0 = x0(T )) [12].

In the theory of lattice dynamics, the phonon frequencies can be calculated from the
eigenvalues of the force constant matrix, i.e. ωi = √

λi/m, i = 1, . . . , 3N , where ωi is the
i th phonon frequency, λi is the i th eigenvalue of Φ, and m is the atom mass. Once the phonon
frequencies are known, the Helmholtz free energy A can be computed as [16]

A = U(x0)+ kBT
3N∑

j=1

ln

[
2 sinh

(
h̄ω j

2kBT

)]
, (4)

where kB is the Boltzmann constant and h̄ is the reduced Planck’s constant.

2.2. QHMG-n method

The Helmholtz free energy defined by equation (4) requires the calculation of all the
eigenvalues of the force constant matrix, which can be very expensive. The Helmholtz free
energy can also be calculated from the local thermodynamic properties of the system, which
are defined by LPDOS [10, 17]. The Helmholtz free energy for an atom at position xα, defined
by Aα , can be written as [18–20]

Aα = Uα + kBT
∫ ωmax

0
ln

(
2 sinh

h̄ω

2kBT

)
n(ω, xα) dω, (5)

where Uα is the static potential energy of atom α, ωmax is the maximum phonon frequency,
and n(ω, xα) is the LPDOS at position xα. n(ω, xα) can be calculated from the on-site phonon
Green’s function [21], i.e.

n(ω, xα) = 2mω

(
− 1

π
lim
ε→0+

Im
3∑

j=1

Gα j,α j(mω
2 + iε)

)
, (6)

where Im
∑3

j=1 Gα j,α j represents the imaginary part of the summation of the on-site phonon
Green’s functions for atom α. For a given atom α and direction index j , Gα j,α j can be
represented by a continued fraction expression [22],

Gα j,α j(Z) = 1

Z − a1 − b2
2

Z−a2− b2
3

... b2
3N

Z−a3N

, (7)
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(a) (b)

(c) (d)

Figure 1. Comparison of LPDOS obtained with QHMG-n and QHMK methods: (a) QHMG-1,
(b) QHMG-2, (c) QHMG-5, and (d) QHMG-20. The dashed lines are the LPDOS computed by
QHMG-n method. The solid lines are the LPDOS obtained with the QHMK method. T = 300 K.

where Z = mω2 + iε and the coefficients al , l = 1, 2, . . . , 3N , and bl , l = 2, 3, . . . , 3N ,
are obtained from the force constant matrix by the tridiagonalization technique [23]. In
practice, only the first n levels of coefficients are calculated and the rest of the coefficients are
approximated by their asymptotic values, a∞ and b∞. A square root terminator function [14]
is then defined to represent the remaining part of the continued fraction, which is given by

t (Z) = 1

b∞

⎡

⎣ Z − a∞
2b∞

− i

√

1 −
(

Z − a∞
2b∞

)2
⎤

⎦ . (8)

Using the square root terminator, the on-site phonon Green’s function for the j th direction of
atom α can be rewritten as

Gα j,α j(Z) = 1

Z − a1 − b2
2

Z−a2− b2
3

... b2
n

Z−an−b2
n+1 t (Z )

. (9)

In the QHMG-n method, as outlined above, for a given atom position xα and direction
j , the first n levels of recursion coefficients are calculated. Then the on-site phonon Green’s
function is calculated by using equation (9). Finally, the Helmholtz free energy at position xα
can be calculated by using equations (5) and (6). The accuracy of the Helmholtz free energy
computed by the above approach depends on the number of recursion coefficients employed.
The inclusion of more levels of recursion coefficients in the calculation of the on-site phonon
Green’s function leads to a more accurate calculation of the Helmholtz free energy. In an earlier
paper [15], it was shown that n = 20 (i.e. QHMG-20) can typically provide accurate results for
thermodynamic and mechanical properties of silicon nanostructures.

To understand the significance of the number of recursion levels on the calculation of
LPDOS, consider the results shown in figure 1, where the QHMG-n method with n = 1, 2, 5

4
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and 20 is compared with the QHMK method for bulk silicon. The QHMK method, which has
been discussed in detail in [12, 13], has been shown to accurately capture the LPDOS of bulk
silicon. When n = 1, the LPDOS obtained from QHMG-1 (see figure 1(a)) is very different
from that computed by the QHMK method. As shown in figure 1(b), QHMG-2 performs better
than QHMG-1, as it can capture the acoustic and the optical phonon peaks. The accuracy
further increases with QHMG-5, as shown in figure 1(c). Even though QHMG-5 captures the
lower and the higher frequency spectrum, it does not accurately capture the middle frequencies
in the range of around 10 THz. When the number of levels is increased to 20, as shown in
figure 1(d), the LPDOS obtained from QHMG-20 is very similar to the LPDOS computed by
using the QHMK method.

The results presented above indicate that typically a value of at least n = 20 is needed
to accurately compute the thermal and mechanical properties of silicon nanostructures. The
implementation of QHMG-20 can, however, be quite expensive. For example, when n = 1, in
order to compute the recursion coefficients a1 and b2 accurately for bulk silicon, we need to
consider the nearest two layers of atoms around an atom. When n = 2, the nearest four layers
of atoms need to be taken into account. Similarly, for n = 20, the nearest 40 layers of atoms
need to be considered to accurately compute the first 20 levels of recursion coefficients. As the
number of layers increases, the number of atoms that need to be considered increases rapidly
and the size of the force constant matrix becomes very large and computationally intractable.
As a result, for large n, QHMG-n can be expensive for the calculation of the thermal and
mechanical properties of nanostructures.

2.3. Semi-local QHMG method

As discussed in section 2, QHMG-n with a large n (typically at least a value of n = 20) can
be an accurate method to compute the spatial variation of thermal and mechanical properties of
silicon nanostructures. However, QHMG-n with a large n can be quite expensive. As pointed
out in section 1, other alternative methods also have limitations. For example, LQHM [11],
which considers only the vibration of the atom of interest, is a local approach which is fast but
the accuracy can be questionable [12, 13]. QHM, a global approach, considers the vibrations
of all the atoms. This approach can accurately predict the spatial variation of thermal and
mechanical properties but can be an expensive approach for a large number of atoms in the
system. QHMK is a fast and an accurate approach for bulk systems but the extension of
the approach to compute spatial variation of thermal and mechanical properties, especially
under deformation, is not trivial. In this paper, we develop a semi-local QHMG method, which
combines—to a large extent—the accuracy of the QHMG-n approach and the efficiency of the
LQHM approach. The key features of the semi-local QHMG approach are that (i) it considers
two layers of atoms around an atom (it includes more atoms compared to the LQHM method,
but many fewer compared to the QHMG-20 approach—hence the name semi-local) and (ii)
it computes the asymptotic recursion coefficients, a∞ and b∞, from the force constant matrix
obtained by the LQHM method instead of the average value of the first n levels of the recursion
coefficients as was done in the QHMG-n approach.

To understand why two layers of atoms can be a reasonable approximation for nearby
interactions, consider the calculation of the Helmholtz free energy as a function of the lattice
constant for bulk Tersoff silicon at 300 K. Figure 2 shows the variation of the Helmholtz free
energy with lattice constant by using different levels of recursion coefficients. Results from
LQHM and QHMK are also shown in the figure for comparison. The filled square symbol on
each curve represents the minimum Helmholtz free energy, and the corresponding value on the
x-axis is the lattice constant. As the results in the figure indicate, QHMG-1 is in significant

5
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Figure 2. Variation of the Helmholtz free energy with lattice constant at 300 K. Comparison
between LQHM (dashed line), QHMK (solid line) and QHMG-n (QHMG-1, solid line with circle
symbol; QHMG-2, dash–dot line; QHMG-20, solid line with diamond symbol). The filled square
symbol on each curve indicates the lattice constant corresponding to the minimum Helmholtz free
energy.

error compared to the QHMK results, while QHMG-2 provides a good approximation to both
the free energy and the lattice constant. QHMG-2, however, uses four layers of atoms around
the atom of interest to accurately compute the first two levels of recursion coefficients. If we
use only two layers of atoms, instead of four layers of atoms, the first two levels of recursion
coefficients for various temperatures are shown in figure 3. The recursion coefficients a1, b2

and a2 obtained with two layers of atoms and four layers of atoms are identical. The recursion
coefficient b3 obtained with two layers of atoms deviates slightly when compared to its value
obtained with four layers of atoms. This is due to the fact that the interactions with the atoms
in the third and the fourth layers are neglected. Since the effect of the atoms in the third and
the fourth layers is negligible on a1, b2 and a2 and small on b3, a semi-local approximation
with two layers of atoms can be a reasonable approximation to determine the thermodynamic
properties.

In the rest of this section, first we will present an efficient way to compute a∞ and b∞
using the semi-local approximation and then the moment method is introduced to calculate the
first two levels of recursion coefficients by using the nearest two layers of atoms.

2.3.1. Calculation of a∞ and b∞. a∞ and b∞ are the asymptotic values of the recursion
coefficients an and bn. For a large system (i.e. if N is large), a∞ can be approximated
by the trace of the tridiagonalized force constant matrix ΦTD divided by 3N [24]. Since
the transformation matrix L used to compute ΦTD, i.e. ΦTD = LTΦL, is an orthonormal
matrix [15], the trace of Φ is preserved, i.e. trace(Φ) = trace(ΦTD). Thus, a∞ can also be
defined as trace(Φ)/3N . Furthermore, by using the local quasi-harmonic approximation [11],
without changing the trace of Φ, the force constant matrix Φ can be decomposed into N 3 × 3
matrices, Φ(α), α = 1, 2, . . . , N , by neglecting all the interactions between atoms. The local

6
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Figure 3. Comparison of the first two levels of recursion coefficients between QHMG-2 and the
semi-local QHMG method. Computed by four layers of atoms, a1 and a2 are shown as the solid line
and dashed line in the top part; b2 and b3 are shown as the solid line and dashed line in the bottom
part. Computed by two layers of atoms, a1 and a2 are shown as the cross symbol and circle symbol
in the top part; b2 and b3 are shown as the cross symbol and the circle symbol in the bottom part.

force constant matrix Φ(α) is given by

� j,k(α) = ∂2Ulocal(α)

∂xα j∂xαk

⏐⏐⏐⏐
x=x0

, j, k = 1, 2, 3, (10)

where Ulocal(α) is the local potential energy of atom α, which contains contributions from the
first and second nearest neighbours. If the system is homogeneous, the local force constant
matrix of each atom, Φ(α), is identical. Thus, we have the relation

a∞ ∼= trace(ΦTD)

3N
= trace(Φ)

3N
=
∑N

α=1 trace(Φ(α))
3N

∼= traceΦ(α)
3

. (11)

Furthermore, for a perfect silicon lattice structure, a∞ and b∞ are related by the
expression [18, 25]

b∞ = a∞
2
. (12)

Once a∞ is obtained from equation (11), b∞ is obtained by using equation (12).

2.3.2. Moment description and recursion coefficients. In the QHMG-n method, the force
constant matrix is tridiagonalized by using the Lanczos algorithm to compute the recursion
coefficients. An alternative, and a more flexible, approach to compute the recursion coefficients
is by using the moments of the density of states. The moment approach has the advantage that
it allows an interpretation of the recursion coefficients in terms of the atomic structure.

7



J. Phys.: Condens. Matter 19 (2007) 226202 H Zhao and N R Aluru

The r th moment of the phonon density of states n(ω), denoted as μr , is given by [10]

μr =
∫ ∞

−∞
(mω2)r n(ω) dω =

∑

i

λr
i = trace(Φr ) =

N∑

α=1

3∑

j=1

ψT(xα j)Φrψ(xα j ), (13)

where λi is the eigenvalue of the force constant matrix Φ, ψ(xα j ) = [· · · , 0, 1, 0, · · ·]T

is the 3N × 1 orthogonal vector with the only nonzero entry being the (3α + j − 3)th
position corresponding to atom α in the j th direction, and r is the order of the moment. The
corresponding r th moment of LPDOS at atom position xα in the j -direction is given by

μr (xα j) = ψT(xα j)Φrψ(xα j ) =
∑

abc...k

�la�ab�bc . . .�kl︸ ︷︷ ︸
r

, (14)

where l = 3α + j − 3 and the last step follows from simple matrix multiplication. Since
the matrix elements �i j are zero except for the atoms with interactions, the only nonzero
contributions to the above equation come from the ‘chains’ of atoms with interactions. These
must be closed chains starting and finishing at atom α in the j -direction. Thus, μr (xα j) can
be calculated by counting the number of such chains of length r [23]. For the force constant
matrix obtained by using the Tersoff potential, the first moment represents a hop on a single
atom, the second hops to the nearest two layers of neighbours and back, and so on. Based on
these hopping properties, two more layers of atoms need to be considered when we increase
the order of the moments by two.

The r th moment of LPDOS with an irreducible chain is a special case of equation (14). It is
obtained by counting those which do not return to atom α in the j -direction at any intermediate
step, i.e.

μ̄r (xα j) =
∑

abc...k

�la�ab�bc . . .�kl︸ ︷︷ ︸
r

, a, b, . . . , k �= l. (15)

The connection between moments and recursion coefficients can be seen by expressing the
moments in terms of the recursion coefficients [14]. The relation between the moments with an
irreducible chain and the recursion coefficients is as follows:

μ̄0(xα j) = 1,

μ̄1(xα j) = a1,

μ̄2(xα j) = b2
2,

μ̄3(xα j) = a2b2
2,

μ̄4(xα j) = a2
2b2

2 + b4
2 + b2

2b2
3.

(16)

As an example, for the 17-atom cluster centred at atom α, we have a 51×51 force constant
matrix

Φ =
[

A BT

B D

]
, (17)

where A = Φ1,1 is a scalar, B is a 50 × 1 vector and D is a 50 × 50 matrix. By using
equation (17), for atom position xα in the x-direction ( j = 1), the irreducible chain moments
in equation (16) can be rewritten as

μ̄0(xα1) = 1,

μ̄1(xα1) = A,
μ̄2(xα1) = BTB,
μ̄3(xα1) = BTDB,
μ̄4(xα1)

∼= (BTB)2 + BTDDB.

(18)

8



J. Phys.: Condens. Matter 19 (2007) 226202 H Zhao and N R Aluru

Figure 4. The lattice constant for Tersoff silicon at different temperatures. Results are from LQHM
(dashed line), QHMK (solid line), semi-local QHMG (cross symbol) and MD simulations (circle
symbol). The MD simulations are from [7].

By using equations (16) and (18), the first two levels of recursion coefficients can be computed.
Since only the nearest two layers of neighbour atoms are considered in obtaining the force
constant matrix Φ, the recursion constant b3 has a small error as the interactions of the nearest
two layers of neighbour atoms with the atoms in the third and fourth layers are neglected. But
the recursion constants a1, b2 and a3 are accurate as shown in figure 3.

3. Results and discussion

3.1. Lattice constant

Lattice constant as a function of temperature is a fundamental property of materials. In the
quasi-harmonic approximation, the Helmholtz free energy is a function of lattice constant a(T ),
which is also a function of temperature T . The lattice constant a(T ) is obtained when the
Helmholtz free energy is minimized with respect to a(T ), i.e.

∂A

∂a
= 0. (19)

We computed the zero pressure lattice constant a(T ) for bulk silicon at various temperatures
by using the semi-local QHMG method as shown in figure 4. The results from the LQHM
model, QHMK model and MD simulations are also plotted for comparison. The results from
the semi-local QHMG model are in good agreement with the results obtained from the QHMK
model.

Once the lattice constant a for a given temperature is computed, all the phonon structures
can be easily obtained. Figure 5 shows the phonon density of states of bulk silicon at 300 K. We
observe that by including the first two layers for short range interactions together with the long
range interactions the results from the semi-local QHMG model capture the essential features
of the LPDOS.

9
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Figure 5. The LPDOS for bulk Tersoff silicon: comparison between the LQHM (dashed line),
QHMK (solid line) and semi-local QHMG (cross symbol). T = 300 K.

Table 1. Comparison of different models at T = 300 K.

LQHM QHM QHMK QHMG-20 Semi-local QHMG

Space Real Real Reciprocal Real Real
Model Local Nonlocal Nonlocal Nonlocal Local
Vibration correlations No Yes Yes Yes Yes
Dimension of the force 3 × 3 3N × 3N 6 × 6 3N × 3N 51 × 51
constant matrix for silicon for Tersoff silicon

Lattice parameter (Å) 1.00353 1.00267 1.00267 1.00267 1.00270
Free energy (eV/atom) −4.571 −4.580 −4.584 −4.584 −4.583
Internal energy (eV/atom) −4.531 −4.531 −4.531 −4.531 −4.531
Entropy (J mol−1 K−1) 12.887 15.833 17.128 17.090 16.860
Heat capacity (J mol−1 K−1) 18.903 19.142 19.2308 19.201 19.148
C11 (Mbar) 1.373 1.377 1.372 1.372 1.372
C12 (Mbar) 0.726 0.733 0.732 0.732 0.731
C44 (Mbar) 0.667 0.664 0.662 0.662 0.660

CPU time (s) 0.01 0.2(N = 64) 0.1 4.97 0.03

3.2. Thermal and mechanical properties of bulk silicon

Once the Helmholtz free energy is known, other thermodynamic properties can be easily
calculated. For example, the internal energy is given by E = A − T (∂A/∂T ), the entropy
is given by S = (E − A)/T and the heat capacity is given by Cv = −T (∂2 A/∂T 2). Similarly,
the elastic constants characterizing the material behaviour can be computed by the second
derivatives of the Helmholtz free energy density with respect to the Green–Lagrange strain
(see [13] for details).

In addition to the calculation of the lattice constant, Helmholtz free energy and LPDOS
as discussed above, we have also used the semi-local QHMG method to compute the internal
energy, entropy, heat capacity and elastic constants (C11, C12 and C44) of bulk silicon at 300 K.
These results are summarized in table 1. The predictions from other methods such as LQHM,

10



J. Phys.: Condens. Matter 19 (2007) 226202 H Zhao and N R Aluru

H

W

L

[001]
[100]

[010]

Figure 6. A silicon nanowire with H = 2.58 nm, W = 2.58 nm and L = 54.3 nm. The atoms of
interest are shown in the figure.

QHM, QHMK and QHMG-20 are also shown in table 1 for comparison. The results from the
semi-local QHMG model are in good agreement with the results obtained from QHM, QHMK
and QHMG-20, while the results from LQHM can have significant error. For example, the
relative error in entropy between LQHM and QHMK models is 24.7606%, but the relative
error in entropy between semi-local QHMG and QHMK models is only 1.5647%. Table 1 also
summarizes the computational cost of each method. The computational cost of the semi-local
QHMG method is comparable to the computational cost of the LQHM method while QHM,
QHMK and QHMG-20 are clearly more expensive. From the results presented here, it can be
seen that the semi-local QHMG method achieves the computational efficiency of the LQHM
method and the accuracy of the QHM, QHMK and QHMG-20 methods.

3.3. Surface effects of silicon nanostructures

For silicon nanostructures confined in one or more directions, the use of bulk thermal and
mechanical properties is not accurate as these properties can vary spatially. In addition, surface
effects can become important. For example, the silicon atoms on the surface can have a different
configuration (e.g. hydrogen passivation, surface reconstruction etc) compared to bulk silicon
atoms. Here we simply adopt a clean silicon surface to end the nanowire or the silicon cluster.
To illustrate the spatial variation of the thermodynamic and mechanical properties, we consider
the silicon nanowire presented in [15] which has a cross-section of 2.58 nm × 2.58 nm. The
positions of the atoms of interest are also shown in figure 6. Note that for the nanowire with
ideal surfaces the surface atoms have only two bonds.

Figure 7 shows the local thermodynamic properties (Helmholtz free energy, internal
energy, entropy, heat capacity, vibrational energy and kinetic energy) as a function of atom
positions obtained with LQHM, QHMG-20 and semi-local QHMG methods. We do not show
results from the QHMK model as it cannot capture the spatial variation (see [15] for results
obtained from the QHMK method). Both LQHM and semi-local QHMG models can capture
the variation of the thermodynamic properties near the surface, but the results from the semi-
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Figure 7. Variation of thermodynamic properties ((a) Helmholtz free energy, (b) internal energy,
(c) vibrational energy, (d) kinetic energy, (e) entropy, (f) heat capacity) with different atom positions
shown in figure 6. Results are from LQHM (dashed line), QHMG-20 (solid line) and semi-local
QHMG (cross symbol). T = 300 K.

Figure 8. Variation of elastic constants (in Mbar) with different atom positions shown in figure 6.
Results are from LQHM (dashed line), QHMG-20 (solid line) and semi-local QHMG (cross
symbol). T = 300 K.
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local QHMG model are closer to the QHMG-20 compared to the LQHM results. Figure 8
shows the spatial variation of the elastic constants computed using LQHM, semi-local QHMG
and QHMG-20 methods. We again observe that the results obtained with the semi-local QHMG
are closer to the QHMG-20 results while the results obtained with LQHM can have significant
errors.

4. Conclusions

In this paper, we presented a semi-local QHMG method to compute the thermodynamic and
mechanical properties of both bulk crystalline silicon and silicon nanostructures described by
the Tersoff interatomic potential. In contrast to the QHMG-n method, which considers many
layer of atoms, the semi-local QHMG method considers only two layers of atoms. We note that
the LPDOS computed by the semi-local QHMG method captures the essential features of the
LPDOS computed by the QHMG-n method even though the semi-local QHMG method uses
only two layers of atoms. We have also shown that the semi-local QHMG method can approach
the efficiency and simplicity of the local quasi-harmonic method, and at the same time predict
the thermodynamic and mechanical properties of both bulk silicon and silicon nanostructures
more accurately compared to the local quasi-harmonic method.
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